BRAIN WAVE SENSOR




    BRAIN WAVE SENSOR

BRAIN WAVE SENSOR report

Call:9591912372

BRAIN WAVE SENSOR

BRAIN WAVE SENSOR


Abstract— Electroencephalography (EEG) is a decades-old method for measuring the brain’s electrical activity using a series of sensors placed on the scalp. In recent years, better sensor technologies and data-processing techniques, as well as more detailed knowledge of the brain, have dramatically improved the information that can be extracted from EEG. For example, scientists now use computationally intense signal processing and pattern-recognition techniques to predict where in the brain a particular signal measured on the surface of the scalp originated or how different parts of the brain are connected. EEG currently has a number of clinical applications–diagnosing sleep disorders or pinpointing the origin of a seizure, for example–but ElMindA and others aim to broaden its clinical use. The company has developed a novel system that calculates a number of different parameters from EEG data, such as the frequency and amplitude of electrical activity in particular brain areas, the origin of specific signals, and the synchronicity in activity in two different brain areas as patients perform specific tests on a computer. “We usually find patterns of activity which are very unique for the specific state of the patient.The researchers are currently characterizing those patterns in the context of stroke therapy. Intensive rehabilitation after stroke can improve speech and motor problems by helping the brain to rewire, compensating for damaged circuits. At present, choosing the best therapy option for a patient is in part a trial-and-error process that can take weeks. But because healing capacity declines over time, it’s imperative to find the most successful treatment as soon as possible after the stroke. In a recent, as-yet unpublished study of stroke patients with a condition known as neglect–a common symptom in which the patient unknowingly ignores half of the visual field–the researchers analyzed brain activity throughout a course of rehabilitation. Stroke patients began the study with activity patterns that were quite different from those seen in normal individuals. The scientists found that the patients whose vision improved with two weeks of treatment–they were better able to detect moving objects in the neglected part of the visual field–showed signs of improvement in the brain very early on, before it was clear to the therapists or the patients themselves. “The pattern becomes more similar to a normal pattern,”