Kinetic Energy Recovery System using a Flywheel in Bicycle


Kinetic Energy Recovery System using a Flywheel in Bicycle report

Call:9591912372

Kinetic Energy Recovery System using a Flywheel in Bicycle

Kinetic Energy Recovery System using a Flywheel in Bicycle


Abstract: Kinetic Energy Recovery System (KERS) is a system for recovering the moving vehicle's kinetic energy under braking and also to convert the usual loss in kinetic energy into gain in kinetic energy.When riding a bicycle, a great amount of kinetic energy is lost while braking, making start up fairly strenuous. Here we used mechanical kinetic energy recovery system by means of a flywheel to store the energy which is normally lost during braking, and reuse it to help propel the rider when starting. The rider can charge the flywheel when slowing or descending a hill and boost the bike when accelerating or climbing a hill. The flywheel increases maximum acceleration and nets 10% pedal energy savings during a ride where speeds are between 12.5 and 15 mph. KERS is a collection of parts which takes some of the kinetic energy of a vehicle under deceleration, stores this energy and then releases this stored energy back into the drive train of the vehicle, providing a power boost to that vehicle. For the driver, it is like having two power sources at his disposal, one of the power sources is the engine while the other is the stored kinetic energy. Kinetic energy recovery systems (KERS) store energy when the vehicle is braking and return it when accelerating. During braking, energy is wasted because kinetic energy is mostly converted into heat energy or sometimes sound energy that is dissipated into the environment. Vehicles with KERS are able to harness some of this kinetic energy and in doing so will assist in braking. By a proper mechanism, this stored energy is converted back into kinetic energy giving the vehicle extra boost of power.There are two basic types of KERS systems i.e. Electrical and Mechanical. The main difference between them is in the way they convert the energy and how that energy is stored within the vehicle. Battery-based electric KERS systems require a number of energy conversions each with corresponding efficiency losses. On reapplication of the energy to the driveline, the global energy conversion efficiency is 31–34%. The mechanical KERS system storing energy mechanically in a rotating fly wheel eliminates the various energy conversions and provides a global energy conversion efficiency exceeding 70%, more than twice the efficiency of an electric system. This design of KERS bicycle was motivated by a desire to build a flywheel energy storage unit as a proof of concept. On a flat road, the cyclist can maintain a fixed cruising speed to get from point to point. Globally all roads are flat with impediments such as intersections, cars, and turns that force the cyclist to reduce speed, then accelerate.