Project Categories

 
Matlab Projects in Bnaglore|VLSI Projects in Bangalore|ECE Projects in Bangalore|EEE Projects in bangalore,Mtech internship,matlab project centers in bangalore
Mtech internship,Power System Projects,Arduino Projects,IEEE ECE Projects,Raspberry pi Projects,VHDL Projects,SIMULINK Projects,MATLAB Projects call:9591912372 Download Our Android App Mtech Projects,Mtech Matlab Projects in Banglore,Mtech VLSI Projects in Bangalore,Mtech IEEE Projects,Mtech internship,matlab project centers in bangalore IEEE Matlab Projects in Bnaglore,IEEE VLSI Projects in Bangalore,2016 IEEE Project List,2017 VLSI Project List,2016 IEEE Matlab Basepaper,matlab project centers in bangalore

Relative Forest for Visual Attribute Prediction

Abstract

Accurate prediction of the visual attributes is significant in various recognition tasks. For many visual attributes, while it is very difficult to describe the exact degrees of their presences, by comparing the pairs of samples, the relative ordering of presences may be easily figured out. Based on this observation, instead of considering such attribute as binary attribute, the relative attribute method learns a ranking function for each attribute to provide more accurate and informative prediction results. In this paper, we also explore pairwise ranking for visual attribute prediction and propose to improve the relative attribute method in two aspects. First, we propose a relative tree method, which can achieve more accurate ranking in case of nonlinearly distributed visual data. Second, by resorting to randomization and ensemble learning, the relative tree method is extended to the relative forest method to further boost the accuracy and simultaneously reduce the computational cost. To validate the effectiveness of the proposed methods, we conduct extensive experiments on four databases: PubFig, OSR, FGNET, and WebFace. The results show that the proposed relative forest method not only outperforms the original relative attribute method, but also achieve the state-of-the-art accuracy for ordinal visual attribute prediction.

Relative Forest for Visual Attribute Prediction pdf


Projects at Bangalore offers Final Year students Engineering projects - ME projects,M.Tech projects,BE Projects,B.Tech Projects, Diploma Projects,Electronics Projects,ECE Projects,EEE Projects,Mechanical projects,Bio-Medical Projects,Telecommunication Projects,Instrumentation Projects,Software Projects - MCA Projects,M.Sc Projects,BCA Projects,B.Sc Projects,Science Exhibition Kits,Seminars,Presentations,Reports and Power System Projects,Arduino Projects,IEEE ECE Projects,Raspberry pi Projects,VHDL Projects,SIMULINK Projects,MATLAB Projects,Mtech internship etc


Facebook Twitter MTech Projects

Relative Forest for Visual Attribute Prediction,Multi-task CNN Model for Attribute Prediction,Models of Semantic Representation with Visual Attributes,DEEP-CARVING: Discovering Visual Attributes by Carving,Just Noticeable Differences in Visual Attributes

MTech Projects